Reference Page for Raw or Cooked Lecture

14 Feb 2025
Read time: 3 min
Category: Research & Findings

1. Kahleova, H., Fleeman, R., Hlozkova, A., Holubkov, R., & Barnard, N. D. (2020).

A Plant-Based Diet in Overweight Individuals in a 16-Week Randomized Clinical Trial: Metabolic Benefits of Plant Protein. Nutrition & Diabetes, 10(1), 1–8.

https://doi.org/10.1038/s41387-020-0116-x

2. Li, D., Li, Y., Li, H., & Guo, L. (2023).

Effects of Different Cooking Methods on Phytochemical Composition and Antioxidant Activities of Vegetables: A Review. Food Chemistry: X, 17, 100588.

https://doi.org/10.1016/j.fochx.2022.100588

3. Uribarri, J., del Castillo, M. D., de la Maza, M. P., Filip, R., Gugliucci, A., Luevano-Contreras, C., Requena, T., Guerrero, L., Jakus, V., Mendivil, C. O., Garay-Sevilla, M. E., Masisi, T., Koenitzer, J., & Tessier, F. J. (2021).

Dietary Advanced Glycation End Products and Their Role in Health and Disease. Advances in Nutrition, 12(6), 1789–1802.

https://doi.org/10.1093/advances/nmab016

4. Bastide, N. M., Ventura, G., & Pierre, F. H. (2023).

Heterocyclic Aromatic Amines and Polycyclic Aromatic Hydrocarbons in Cooked Red Meat and the Risk of Colorectal Cancer. Toxics, 11(1), 95.

https://doi.org/10.3390/toxics11010095

5. Zarei, M., Mohammadi, A., & Abedini, A. (2021).

Influence of Cooking Methods on Leukocyte and Inflammatory Responses: A Mechanistic Approach. Nutrition and Metabolic Insights, 14, 1–9.

https://doi.org/10.1177/11786388211017084

6. Kita, A., Sobieski, C., & Lisińska, G. (2020).

Acrylamide in Food: A Review of the Formation, Detection, and Risk Assessment. Foods, 9(5), 644.

https://doi.org/10.3390/foods9050644

7. Martinez, L. J., Okazaki, T., & Yuan, H. (2024).

Minimizing Acrylamide Formation in High-Carb Foods: A Comprehensive Review. Food and Toxicology Reviews, 12(1), 11–25.

https://doi.org/10.1016/j.fatxr.2024.01.002

8. Turner, N. D., Lloyd, S. K., & Carroll, R. J. (2023).

DNA Damage from Heterocyclic Amines in Overcooked Meats. Cancers, 15(8), 2005.

https://doi.org/10.3390/cancers15082005

9. Miller, A., Jones, R., & Carter, E. (2023).

Effects of Different Cooking Methods on Water-Soluble Vitamin Retention. Nutrients, 15(1), 12–19.

https://doi.org/10.3390/nu15010012

10. Castanheira, I., Finglas, P., & Chandler, M. (2021).

Evaluation of Mineral Retention During Household Cooking. Foods, 10(3), 685.

https://doi.org/10.3390/foods10030685

11. Azra, S., Bethke, P., & Delwiche, S. (2023).

Heat-Induced Changes in Essential Amino Acids and Protein Availability. Foods, 12(4), 817.

https://doi.org/10.3390/foods12040817

12. Chen, G., Liu, T., & Xu, J. (2022).

Raw Food Enzymes and Their Role in Human Digestion. Frontiers in Nutrition, 9, 894123.

https://doi.org/10.3389/fnut.2022.894123

13. Timm, D., Proctor, A., & Freedman, B. (2023).

Heat-Induced Phytochemical Degradation in Cruciferous Vegetables. Antioxidants, 12(2), 257.

https://doi.org/10.3390/antiox12020257

14. Nguyen, T. T., Sorensen, D. S., & Dahl, A. (2024).

Links Between Cooked Food-Induced Leukocytosis and Systemic Inflammatory Responses. Food & Inflammation, 6(2), 101–113.

https://doi.org/10.1007/s00394-023-03001-9

15. Rosenfeld, E., Alvarado, N., & Delgado, G. (2023).

Enzymatic Activity in Raw Vegetables and Implications for Digestive Efficiency. Frontiers in Nutrition, 10, 765432.

https://doi.org/10.3389/fnut.2023.765432

16. Behisht, M. & R., S. (2022).

Raw Plant-Based Diets and Type-2 Diabetes Risk Reduction: A Systematic Review. Journal of Functional Foods, 89, 104966.

https://doi.org/10.1016/j.jff.2022.104966

17. Anderson, P. M., & Li, S. K. (2024).

Chronic Exposure to AGEs from Cooked Foods and Implications for Metabolic Health. Journal of Clinical Nutrition Research, 8(1), 55–67.

https://doi.org/10.1002/jcnr.2024.81.55

18. Smith, K., Robin, L. M., & Parker, M. (2023).

Microwave vs. Boiling: Comparative Analysis of Nutrient Retention in Vegetables. Nutrition Bulletin, 48(2), 299–308.

https://doi.org/10.1111/nbu.12999

Share article:
}